Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques

نویسندگان

چکیده

Seagrasses provide a wide range of ecosystem services in coastal marine environments. Despite their ecological and economic importance, these species are declining because human impact. This decline has driven the need for monitoring mapping to estimate overall health dynamics seagrasses environments, often based on underwater images. However, seagrass detection from digital images is not trivial task; it requires taxonomic expertise time-consuming expensive. Recently automatic approaches deep learning have revolutionised object performance many computer vision applications, there been interest applying this automated imagery. Deep learning–based techniques reduce hardcore feature extraction by domain experts which required machine learning-based techniques. study presents YOLOv5-based one-stage detector an EfficientDetD7–based two-stage detecting seagrass, case, Halophila ovalis, one most widely distributed species. The EfficientDet-D7–based achieves highest mAP 0.484 ECUHO-2 dataset 0.354 ECUHO-1 dataset, about 7% 5% better than state-of-the-art ovalis those datasets, respectively. proposed average inference time 0.077 s 0.043 respectively much lower approach same datasets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Improving SAT Solvers Using State-of-the-Art Techniques

This work discusses modern techniques of state-of-the-art SAT solvers. Since most techniques are published without regard to the effect to recent techniques of other developers, this interference is studied in this work. Therefore, configurations for SAT solver components are combined and the performance of these combinations is analyzed. The SAT solver is divided into the following components:...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

AI and Agents: State of the Art

The paper is a reflection on agent-based AI. Our contention is that AI research should focus on interactive, autonomous systems, that is, on agents. Emergent technologies demand so. We will see how recent developments in (multi-) agent oriented research have taken us closer to the original AI goal, namely, to build intelligent systems of general competence. Agents are not the panacea though. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ecological Informatics

سال: 2023

ISSN: ['1878-0512', '1574-9541']

DOI: https://doi.org/10.1016/j.ecoinf.2023.102047